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LAWS FOR THE HEAT CAPACITY OF ELEMENTS OF THE PERIODIC 

SYSTEM 

I. M. PrikhodVko and V. S. Koshman UDC 536.63:546 

We show a correlation between the derivative of the heat capacity with respect to 
the reduced temperature of elements and their group number at temperatures above 
the Debye temperature. We derive a relation which reflects the character of the 
variation of the heat capacity of the elements as a function of the characteristics 
of their electron structure. 

For a long time the fundamental rule for the heat capacity of elements at high tempera- 
tures (T > 8 D) was the empirical Dulong and Petit law. According to this law the molar heat 
capacities of monatomic solids at temperatures of the order of 300@K are approximately 25 
J/mole.~ However, experimental data at higher temperatures showed that deviations from 
the Dulong and Petit law in a number of cases increase to tens of percent [I]. It has been 
noted by many authors [2, 3, etc.] that the heat capacity of elements varies periodically 
with their atomic number. All this urgently required explanation. Since there is no single 
reliably theory, it is evident that answers to the questions posed can most likely be ob- 
tained by seeking new more general empirical relations. 

Actually, by correlating accumulated experimental data Ivanova [4] showed that the Du- 
long and Petit law is a special case of a more general law: the molar heat capacities of 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 6, pp. 969-974, December, 
1983. Original article submitted June 29, 1982. 

0022-0841/83/4506- 1417507~ �9 1984 Plenum Publishing Corporation 1417 



TABLE i. Experimental Values of Coefficients at, and a, 

ao.I/mole. K 23,80 '22,91124,75 ] 23,82123,861 24,74 24,13 2~,65 
�9 8,660 17,57 16,14 j,o, o r 

various solids at equal values of T/Ttr are nearly the same. This law applies only to ele- 
ments at temperatures T = (0.4-0.6)Ttr. Taking this into account, Ivanova [4] recommended 
that a relation of the form 

T (i) C~ = ao + al ~r 

with ao = 22.12 and a~ = 8.319 be used to calculate high-temperature heat capacities of low- 
melting elements, mainly metals with Tm~2100~ 

Later Filippov [i, 5, 6] proposed relations similar to (i) with ao = 23.82 and a, = 
13.1, ao = 24.94-25.12 and al = 12.56 for metals of groups IV-VIII of the periodic table 
with higher melting points. 

In equations of form (i) the individuality of the substances is taken into account not 
only by the phase transition temperatures, but also by the values of ao and a~ in the transi- 
tion from low-melting to higher-melting elements. Using this last fact, we can hope to obtain 
a single equation for all the substances considered which reflects a more fundamental law of 
variation of the molar heat capacity of elements based on the characteristics of their elec- 
tron structure. 

Equation (I) is essentially an equation relating the linear regression of the dependent 
variable, the molar heat capacity Cp of the elements, on the single independent variable 
T/Ttr. As a second variable it is of interest to consider the number of the group to which 
the element belongs, especially as the relation between the electron component of the molar 
heat capacity of metals ACe and the number of valence electrons per atom [7] 

~2Rk (2) AC ~ ----zT 
2~ F 

was derived on the basis of the free electron model. 

According to [8-11], hlgh-temperature experimental data of the heat capacities of the 
following 56 elements of the periodic system have been analyzed: Li (2), Na (2), K (2), Cu 
(3), Rb (i), Ag (2), Cs (2), Au (3), Be (2), Mg (2), Ca (2), Zn (2), Cd (2), Ba (2), B (2), 
AI (2), Ge (2), Sc (i), Ga (2), Y (I), In (2), La (i), TI (3), Ac (i), C (2), Si (2), Ti (2), 
Zr (2), Sn (2), Hf (2), eb (4), P (2), V (3), As (i), Nb (4), SD (2), Ta (5), Bi (3), S (I), 
Cr (2), Se (!), Mo (4), Te (2), W (4), Mn (2), Tc (i), Re (3), Fe (2), Co (2), Ni (2), Ru 
(3), Rh (2), Pd (3), Os (i), Ir (3), and Pt (2). (The number in parentheses following a 
chemical symbol is the number of the reference from which the data on the heat capacity of 
that element were taken.) 

On the basis of the experimental data in [8-11], and using the method of least squares 
for the elements within the limits of each group, we derived empirical laws of the form (i) 
for the temperature dependence of the molar heat capacity. The values of the coefficients 
ao and a~ appearing in these equations are listed in Table i. The value of ao is approxi- 
mately constant, while a~ tends to increase with increasing group number z of the elements 
of the periodic system. This enables us to write Eq. (i) in the form 

Cp = 23.96 + (4.581+1.4572) I (3) 
rm 

Figure 1 shows average (within the limits of groups of the system) molar heat capaci- 
ties of elements for various values of the reduced temperature T/Tm, calculated with Eq. 
(3), data from [I, 4-6], and the average experimental results from [8-11]. It can be seen 
from the figure that the experimental values are best described by Eq. (3) which, in con- 
trast with [i, 4-6], follows the actual increase of the molar heat capacities of elements 
with increasing group number of the elements in the periodic system. 
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Fig. i. Comparison of calculated and experimental values 
of molar heat capacities Cp (J/mole.~ of elements as a 
function of z: I) experimental values; 2) [4]; 3) [6]; 4) 
according to our data; a) T/Tm = 0.8; b) T/Tm = 0.4. 

Fig. 2. Heat capacities Cp (J/kgo~ of metals as a func- 
tion of the universal parameter tana at T/Tm = 0.3. I) 
from experiment; 2) our data. 

The question of the degree of reliability of the experimental values of the heat capa- 
cities of various materials is one of the most pressing in contemporary thermophysical re- 
search. Here two facts should be taken into account. 

First, it is very difficult to choose the most reliable values of the heat capacities 
of materials from the large number of published results presently available. In each speci- 
fic case in deciding among values in various references and taking account of the individual 
author's estimates of errors, it is intuitively assumed that the distribution of errors is 
unbiased. Such a hypothesis is unjustifiably strong if account is taken of the practically 
complete lack of objective criteria of the truth of the results of experimentally determined 
thermophysical properties of materials. 

Secondly, as a rule only random errors of an experimental determination of desired pa- 
rameters are subject to a quantitative estimate. However, in a broad sense, many systematic 
errors which remain unchanged in series of experiments performed by one group, but change 
when the research is performed in neighboring laboratories using other methods or other 
equipment may also be considered random. 

The coefficients in Eqs. (i) and (3) clearly include both systematic and random com- 
ponents. This requires the use of statistical processing methods to estimate the confidence 
intervals of the coefficients ao and az in Eqs. (i) and (3), the regression equations, and 
the predicted values of the molar heat capacity. 

A comparative analysis of experimental and calculated data favors a normal distribution 
law for the deviations from the linear relations (I) and (3). Consequently, suitable methods 
(e.g., [12]) developed on the assumption of normal distribution of random values can be used 
for the desired statistical characteristics. It can be shown that the coefficients ao and 
az in the regression equations (I) and (3) are significant. 

The confidence intervals for the significant parameters were determined by the usual 
scheme from the condition 

P [ - - t a , ~  < (a ;  - -  a~)lSa ~ < t~,~] = 1 - -  ~.  ( 4 )  

The calculated confidence intervals of the coefficients ao and a~ (z) of Eq. (3) and the pre- 
dicted values of the molar heat capacity Cp of the elements are shown in Table 2. For com- 
parison similar estimates were made for the regression equation (i) with values of the co- 
efficients ao and al proposed by Ivanova [4] and Filippov [6]. Here we followed the recom- 
mendations of [i, 4-6] with respect to the ranges of possible application of the known re- 
lations. In determining the confidence intervals of the predicted values of the molar heat 
capacities Cp of elements we also took account of an additional source of variation -- the 
scatter of points around the regression line. 
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TABLE 2. Confidence Intervals of a0, a,, and Cp 

Ref. :=tgaScr~ 
ao aj Cf~ 

[41 
[61 

Our data 

4,78 
3,93 
2,02 

4,78--5,41 
3,92--4,44 
2,00--2,28 

7,28 
5,96 
3,08 

Table 2 shows that the confidence intervals examined (regions where the mathematical 
expectations of the values of ao, al, and Cp can be found with a probability P = 0.95) are 
narrowest for Eq. (3), which covers a larger collection of materials than considered in [i, 
4-6]. Consequently, it can be concluded that heat capacities of the elements can be pre- 
dicted with greater certainty by Eq. (3) than by Eq. (i) with the values of ao and a~ pro- 
posed earlier [i, 4-6]. 

The high degree of reliability of the values of the heat capacities of elements calcu- 
lated with Eq. (3) can be confirmed by using the system of unpolarized ion radii [13]. Here 
the linear character of the dependence of properties on a universal parameter tana reflect- 
ing the characteristics of the structure of the outer electron shells of atoms corresponds 
to the reliable experimental data on the physicochemical properties of element-analogs. The 
known experimental values [8-11] of the heat capacities of elements of a fragment of the 
periodic system at the temperature T/T m = 0.3 are plotted against tana in Fig. 2 together 
with the values calculated with Eq. (3). The calculated values of the heat capacities of 
the elements agree with the experimental values within • and are practically a linear 
function of tan~ in the series of the periodic system. 

Figure 2 shows that the heat capacity of La is an exception to the above~ but its calcu- 
lated value is in satisfactory agreement with the known experimental data. The laws of be- 
havior of the heat capacities of elements with incomplete inner electron shells deserve 
separate consideration. 

The broad possibilities of using Eq. (3) to predict the heat capacities of little- 
studied elements can be illustrated by the example of 223- 87~r. The estimated [14] melting 
point of this element is 282=K, and its heat capacity at 273=K is 29.80 J/mole-~ From 
Eq. (3) the heat capacity of this francium isotope is 30.98 J/mole.=K, which agrees with 
the experimental value within 4%. 

Equation (3) can be recommended for practical calculations of heat capacities of a 
wide variety of elements at temperatures T > 0 D and 0.3Tm < T < T m when there are no struc- 
tural transformations. 

Taking account of the scheme shown in Fig. 2 and the known relation for the melting 
point [3] 

Tm 1/~ = 3.1.10-8 (2n z + 1)0 D, (5 )  

derived by Oshcherina, it canbe concluded that Eq. (3) establishes a sufficiently unambigu- 
ous relation between the heat capacity of elements and their position in the periodic sys- 
tem. 

NOTATION 

T, absolute temperature; eD, Debye temperature; Ttr , temperature of first phase transi- 
tion; Tm, melting point; ao and ax, coefficients in Eq. (i); Cp, heat capacity of an element; 
AC e, electron component of molar heat capacity; z, number of valence electrons per atom 
(number of group of elements); EF, Fermi energy; P, probability; a, confidence level; r, 
number of degrees of freedom; ai* and ai, theoretical and calculated values of parameter; 
S 2, residual variance; tana, universal parameter; n, principal quantum number (number of 
period); R, universal gas constant; k, Boltzmann constant. 
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METHOD FOR CALCULATING THE STABILITY BOUNDARY 

(SPINODAL) OF A HOMOGENEOUS STATE OF A MATERIAL 

I. M. Abdulagatov and B. G. Alibekov UDC 536.71 

A method is developed for calculating the stability limit of a homogeneous state of 
a material based on isochoric heat-capacity measurements. 

It was shown in [i] that the behavior of isochoric heat capacity can be described over 
a wide range of state parameters including the critical region by an equation of the form 

C~ (% %) = As I I - -  A2 (~) TI -~  -3 t regula~on terms. (1)  

Equation (I) generalizes the power law of scale theory for noncritical isochores, and com- 
pared to traditional methods of C V calculation has the advantage that it correctly describes 
C V behavior in the metastab!e region and near the stability boundary of the homogeneous 
state (spinodal). In fact, it follows from Eq. (I) that for ~(~) satisfying the condition 

A2(~) ~ , - -  1 = 0, (2 )  

the isochoric heat capacity increases without limit. This has been well confirmed by ex- 
perimental [2-5], numerical [6, 7], and theoretical [8-12] studies. From Eq. (2) we have 

~ (~) = AF I (~), (3) 

from which follows the physical meaning of the regulation terms of Eq. (i). Consequently, 
A2(~) defines the geometric location of singular points on the thermodynamic surface. For 
each isochor there exists a temperature Ts(~) satisfying the condition Ts(T)~(:(~)(this con- 
dition follows from the properties of the function A2(~) studied in [I]), at which C V in- 
creases without limit. Knowing the value of the regulated parameter of A2(~) for each iso- 
chor, Eq. (3) may be used to calculate the temperature at which CV diverges. Thus these val- 
ues of Ts and T define the position of the spinodal curve. 

Table 1 presents values of temperature and density on the saturation line and spinodal 
curve, calculated from C V data for anumber of n-alkanes [13, 14]. Table 2 compares spinodal 
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